Reductive alkylation of pyridinium salts. Part 2. ${ }^{1}$ Utilisation of di-, tetra- and hexa-hydropyridine esters

Kevin J. McCullough, ${ }^{\dagger}{ }^{\boldsymbol{b}}$ John MacTavish, ${ }^{a}$ George R. Proctor ${ }^{*, a}$ and James Redpath ${ }^{c}$
${ }^{a}$ Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK
${ }^{b}$ Department of Chemistry, Heriot-Watt University, Riccarton, Edinburgh EH14 4AB, UK
${ }^{\text {c }}$ Organon Laboratories Ltd., Newhouse, Lanarkshire ML1 5SH, UK

Abstract

4-Benzyl-4-ethoxycarbonyl-1-substituted piperidines $1\left(\mathbf{R}^{1}=\mathbf{P h C H}_{2}, \mathbf{P h C O} ; \mathbf{R}^{2}=\mathbf{P h C H}_{2}\right)$ cyclise with polyphosphoric acid (PPA) to give spiro[indane-2,4'-piperidin]-1-ones 3 ($\mathrm{R}=\mathrm{PhCH}_{2}, \mathrm{PhCO}$), while 2-benzyl-2-ethoxycarbonyl-1-methylpiperidine 4 gives the N-methylspiro[indane-2,2'-piperidin]-1-one 5 . 3,4,4a, 5 -Tetrahydrobenz[g] isoquinolin- $10(2 H)$-one 8 arises from PPA treatment of 1 -benzoyl-4-benzyl-5-ethoxycarbonyl-1,2,3,4-tetrahydropyridine $7(\mathrm{R}=\mathrm{PhCO})$ while o-chloranil converts 1-benzoyl-4-benzyl-4-ethoxycarbonyl-1,4-dihydropyridine $6(\mathrm{R}=\mathrm{PhCO})$ into 4-benzyl-3-ethoxycarbonylpyridine 9 . Phenyl(tribromomethyl)mercury reacts with 1-benzoyl-4-benzyl-4-ethoxycarbonyl-1,4-dihydropyridine 2 ($\mathrm{R}^{1}=\mathbf{P h C O}, \mathbf{R}^{2}=\mathbf{P h C H}_{2}$) yielding 2-benzoyl-5-benzyl-7,7-dibromo-5-ethoxycarbonyl-2-azabicyclo[4.1.0]hept-3-ene 11, and with 1-benzoyl-4-benzyl-3-ethoxycarbonyl-1,4-dihydropyridine 6 $(\mathbf{R}=\mathrm{PhCO})$ to give 2-benzoyl-5-benzyl-7,7-dibromo-4-ethoxycarbonyl-2-azabicyclo[4.1.0]hept-3-ene 12. The structure of the latter is confirmed by X-ray crystallographic analysis. Catalytic hydrogenation of 2-benzoyl-5-benzyl-7,7-dichloro-5-ethoxycarbonyl-2-azabicyclo[4.1.0]hept-3-ene 16 yields 2-benzoyl-5-benzyl-7,7-dichloro-5-ethoxycarbonyl-2-azabicyclo[4.1.0]heptane 21 which cyclises with PPA to give the tetracyclic product 22 in good yield. When 2-benzoyl-5-benzyl-7,7-dichloro-4-ethoxycarbonyl-2-azabicyclo[4.1.0]hept-3-ene 17 is hydrogenated it yields mainly 2-benzoyl-5-benzyl-7,7-dichloro-4-ethoxycarbonyl-2-azabicyclo[4.1.0]heptane 25 but the dibromo analogue 12 under the same conditions gives two components thought to be 2-benzoyl-5-benzyl-7-endo-bromo-4-ethoxycarbonyl-2-azabicyclo[4.1.0]hept-3-ene 24 and 2-benzoyl-5-benzyl-7-exo-bromo-4-ethoxycarbonyl-2-azabicyclo[4.1.0]hept-3-ene 23.

As described in the preceding paper, some di-, tetra- and hexahydropyridines may be prepared by reductive alkylation of pyridinium ester salts using activated zinc in acetonitrile. In this paper we describe some useful synthetic applications for the reduced and partially reduced pyridines so obtained.

Discussion

4,4-Disubstituted piperidines $1\left(\mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{Ph}\right)$ are readily available by catalytic hydrogenation of 1,4 -dihydropyridines 2^{1-3} and may then be cyclised to spiro[indane-2, 4^{\prime}-piperidin]-1ones 3 ($\mathrm{R}=\mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{Ph}$) in polyphosphoric acid (PPA). In the present work the dihydropyridines $2\left(\mathrm{R}^{1}=\mathrm{COPh}, \mathrm{R}^{2}=\right.$ PhCH_{2} and PhCO) were prepared and reduced to the piperidines $1\left(\mathrm{R}^{1}=\mathrm{COPh}, \mathrm{R}^{2}=\mathrm{PhCH}_{2}\right.$ and PhCO$)$. The first of these cyclised to the spiro compound $3(\mathrm{R}=\mathrm{PhCO})$ with PPA: this further demonstrates the usefulness of such an approach to this ring system. The 2,2 -disubstituted piperidine 4^{1} could also be cyclised in PPA (37%) yielding the N -methylspiro[indane-2,2'-piperidin]-1-one 5. The latter is the first example of this ring-system which is, in effect, a rigid β phenylethylamine and worthy of further study.
As noted before, ${ }^{1}$ catalytic hydrogenation of dihydropyridines 6 obtained from reductive alkylation of nicotinate salts leads to tetrahydropyridines, e.g. $7\left(\mathrm{R}=\mathrm{CH}_{3}\right.$ and PhCO). Somewhat surprisingly, sodium hydroxide hydrolysis of ester 7 ($\mathrm{R}=\mathrm{PhCO}$) gave the ester $7(\mathrm{R}=\mathrm{H})$. However, hydrolysis/ cyclisation in PPA at $95^{\circ} \mathrm{C}$ gave a 75% yield of the
\dagger To whom enquiries regarding X-ray crystallographic studies should be addressed.

1

2

3

5

benz $[g]$ isoquinolinone 8: some examples of this ring system were previously claimed by cyclising 3-benzylpiperidine-4carboxylates. ${ }^{4.5}$ This new synthesis of benz $[g]$ isoquinolinone 8 is facile and productive. The dihydropyridine ester 6 ($\mathrm{R}=$ PhCO) was shown to be useful in another way: oxidation of it with o-chloranil ${ }^{6}$ yielded ethyl 4 -benzylnicotinate 9 . The latter also appears to be novel, suggesting that the two-step protocol
of reductive alkylation followed by oxidation may be a useful method to bring about substitiution of pyridines.

Carbene reactions

Availability of 1,4-dihydropyridines 2 and $\mathbf{6}^{1}$ suggested that they might undergo dihalocarbene addition to yield 2azabicyclo[4.1.0]heptenes $\mathbf{1 0}$ from which azepine derivatives

11

might arise (as shown) under the influence of suitable reagents. Precedents exist for the analogous ring-expansion of quinoline and isoquinoline derivatives into benzazepines. ${ }^{7-9}$ In the event, unstable dihydropyridines $2\left(\mathrm{R}^{1}=\mathrm{CH}_{3}\right.$ and $\left.\mathrm{PhCH}_{2}\right)$ and 6 ($\mathrm{R}=\mathrm{CH}_{3}$ and PhCH_{2}) failed to give recognisable products when treated with phenyl(tribromomethyl)mercury, ${ }^{7.10 .11}$ but the N-benzoyl esters $2\left(\mathrm{R}^{1}=\mathrm{PhCO}\right)$ and $6(\mathrm{R}=\mathrm{PhCO})$ gave the adducts 11 and 12 respectively.

Although elemental analysis and mass spectra indicated that both adducts $\left(\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{NO}_{3}\right)$ were as illustrated, line broadening in the ${ }^{1} \mathrm{H}$ NMR spectra and a failure to identify cyclopropyl protons conclusively, cast some doubts on these structures. Moreover, ${ }^{13} \mathrm{C}$ NMR and 2-D spectroscopy did not clarify the situation and it became necessary to consider alternative structures, (e.g. 13) which might have arisen due to spontaneous ring-expansion. The latter hypothesis seemed quite plausible when it was discovered that compounds 11 and 12 failed to react with silver nitrate ${ }^{7}$ or silver trifluoroacetate in several different solvents, or with collidine ($2,4,6$-trimethylpyridine) in the case of $\mathbf{1 1}$; collidine caused compound 12 to decompose.

From suitable single crystals, the structure of adduct 12 was determined by X-ray crystallographic analysis. The results of this study, depicted in Fig. 1, were entirely consistent with structural formula 12 and supported our assumption that the cyclopropyl ring would be anti to the pendant benzyl group. Although compound 11 is not crystalline, it seemed inconceivable that the same relative stereochemistry would not apply to it.

There is no obvious explanation for the failure of 11 and $\mathbf{1 2}$ to undergo ring-expansion. It has to be conceded that assistance from the unpaired electrons on nitrogen as shown in 10 would be minimal in N-benzoyl structures, although there is an example ${ }^{9}$ of N-acetyl group participation under vigorous conditions giving a fairly low yield of a 2-benzazepine product. There are cases where lithium aluminium hydride has been shown to induce ring-expansion of dihalocarbene adducts containing N-acyl substituents; ${ }^{12.13}$ presumably the reagent restores the basicity of the nitrogen atom by reducing the amidic carbonyl groups, thus allowing the electrons on the nitrogen atom to participate in the process induced by bromide ion expulsion. When compound 11 was treated with lithium aluminium hydride, both carbonyl group reduction and debromination took place; the unstable product, not fully characterised, was thought to be the hemiaminal ether 14.

Fig. 1 Molecular structure of adduct 12 as determined by X-ray crystallographic analysis (ORTEP, the non-hydrogen atoms are represented by 30% probability ellipsoids). ${ }^{19}$ Hydrogen atom labels have been omitted for clarity.

14

15

16

A plausible mechanism can be written which involves the iminium zwitterion 15. Similar treatment of $\mathbf{1 2}$ caused decomposition.

The dichloroadducts 16 and 17 were made from dihydropyridines $2\left(\mathrm{R}^{1}=\mathrm{PhCO}, \mathrm{R}^{2}=\mathrm{PhCH}_{2}\right)$ and $6(\mathrm{R}=$ PhCO) respectively using a phase transfer technique. ${ }^{14.15}$ Yields were consistently satisfactory (91%) for compound 16 but very poor for compound $17(11 \%)$. The method, however, was more convenient than that employing organomercurials. ${ }^{7}{ }^{710.11}$

The aforementioned problem in allocating structures to dihalocarbene adducts 11 and 12 prompted a study of their behaviour on hydrogenolysis, along with comparison with similar treatment of 16 and 17. Prolonged catalytic hydrogenation of compound 11 over palladium gave the

18

19

20

21
debrominated and reduced product 18. Interrupted hydrogenation gave a mixture, not fully characterised, of 19 and 20. For the latter, all data (including elemental analysis) were consistent, but the precise stereochemistry could not be defined.

Contrastingly adduct $\mathbf{1 6}$ was converted by similar catalytic hydrogenation into the dichloroazabicycloheptane 21 which, like related examples $(\mathbf{1} \rightarrow \mathbf{3})$ cyclised (PPA, $120^{\circ} \mathrm{C}$) to the tetracyclic product $\mathbf{2 2}$. On the other hand, the dibromoadduct

12 gave two monobromo azabicycloheptenes, 23 and 24, of which only 24 was solid. Although only small amounts of 23 and 24 were available, mass spectrometry and ${ }^{1} \mathrm{H}$ NMR spectroscopy served to establish with fair certainty the relevant structures. In particular these isomers $\left(\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrNO}_{3}\right)$ could be distinguished by the differing coupling constants between 1 $\mathrm{H}, 6-\mathrm{H}$ and $7-\mathrm{H}$. Thus in the endo bromo isomer $246-\mathrm{H}$ is a double doublet with coupling constants $J 9.1$ and $J 9.1 \mathrm{~Hz}$ characteristic of the expected cis vicinal couplings. The ${ }^{1} \mathrm{H}$ NMR spectrum of the exo bromo isomer 23 was even more convincing: not only did $6-\mathrm{H}$ exhibit a cis ($J 9.7 \mathrm{~Hz}$) coupling with 1-H and a trans ($J 4.6 \mathrm{~Hz}$) coupling with $7-\mathrm{H}$, but $7-\mathrm{H}$ was a clearly resolved double doublet showing the two trans couplings ($J 2.7 \mathrm{~Hz}$ and $J 4.6 \mathrm{~Hz}$) with 1-H and $6-\mathrm{H}$ respectively.
Surprisingly and in contrast, the dichloro analogue 17 underwent double-bond reduction on catalytic hydrogenation: the principal product $\left(\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{NO}_{3}\right)(50 \%)$ was solid and had structure $\mathbf{2 5}$ although the relative stereochemistry of the ester group could not be estimated from the ${ }^{1} \mathrm{H}$ NMR spectrum since both $4-\mathrm{H}$ and $5-\mathrm{H}$ were multiplets (250 MHz). A trace of a second compound $\left(\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{ClNO}_{3}\right) 26$ was isolated by chromatography but the data did not allow a decision as to which chlorine atom (in 25) had been lost, although the exo chlorine might be expected to be more labile.
To conclude, this study demonstrates that the alkylated and reduced pyridines obtained from reductive alkylation of pyridinium salts have several useful synthetic outlets involving bi-, tri- and tetra-cyclic fused and spiro ring systems.

Experimental

For general procedures, see previous paper

1-Benzoyl-4-benzyl-4-ethoxycarbonylpiperidine $1\left(\mathbf{R}^{1}=\mathbf{P h C O}\right.$

 $\mathbf{R}^{2}=\mathbf{P h C H}_{2}$)1-Benzoyl-4-benzyl-4-ethoxycarbonyl-1,4-dihydropyridine ${ }^{1} 2$ $\left(\mathrm{R}^{1}=\mathrm{PhCO}, \mathrm{R}^{2}=\mathrm{PhCH}_{2}\right)(5.89 \mathrm{~g}, 16.95 \mathrm{mmol})$, ethanol (200 cm^{3}) and platinum oxide (200 mg) were hydrogenated at 45 psi in a Cook hydrogenator. The catalyst was then removed by filtration through kieselguhr and the filtrate was concentrated in vacuo, to yield a viscous oil ($5.34 \mathrm{~g}, 90 \%$). Purification by column chromatography (2.165 g) (eluent: 25% ethyl acetatehexane) produced the product as a viscous, colourless oil (1.37
g, 58%), bp $180^{\circ} \mathrm{C} / 0.04 \mathrm{mmHg}$ (Found: C, $75.05 ; \mathrm{H}, 7.3 ; \mathrm{N}$, $3.9 \% ; \mathrm{M}^{+}, 351.1839 . \mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3}$ requires C, 75.2; H, 7.2; N , $4.0 \% ; M, 351.1835) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1720$ and $1660(\mathrm{C}=\mathrm{O}$ str); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.19\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.3-1.7(2$ H , br m, 3-H and $5-\mathrm{H}$), 2.0-2.4 (2 H , br m, 3-H and $5-\mathrm{H}$), 2.80$3.0\left(3 \mathrm{H}, \mathrm{d}\right.$ and $\mathrm{br} \mathrm{m}, J 5.0, \mathrm{PhCH}_{2}$ and ring C-H), $3.09(1 \mathrm{H}, \mathrm{br}$ m , ring C-H), $3.65(1 \mathrm{H}$, br d, ring C-H), $4.12(2 \mathrm{H}, \mathrm{q}, J 7.1$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.56(1 \mathrm{H}$, br d, ring C-H), $7.03(2 \mathrm{H}, \mathrm{m}$, aryl), 7.25 (3 H, m, aryl), 7.35 ($5 \mathrm{H}, \mathrm{m}$, aryl)
N-Benzoylspiro[indane-2,4'-piperidin]-1-one 3 ($\mathbf{R}=\mathbf{P h C O}$) 1-Benzoyl-4-benzyl-4-ethoxycarbonylpiperidine $\quad 1 \quad\left(\mathrm{R}^{1}=\right.$ $\left.\mathrm{PhCO}, \mathrm{R}^{2}=\mathrm{PhCH}_{2}\right)(5.0 \mathrm{~g}, 14.23 \mathrm{mmol})$ was added to polyphosphoric acid (40 g) and stirred at $110^{\circ} \mathrm{C}$, for 6 days. The reaction was then cooled to $60^{\circ} \mathrm{C}$, poured onto ice-water, basified with aqueous sodium hydroxide and extracted with dichloromethane. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo, to produce a dark viscous oil ($3.65 \mathrm{~g}, 84 \%$). Purification by column chromatography (eluent: 2% ethanol in CHCl_{3}), gave the product ($2.9 \mathrm{~g}, 67 \%$). Recrystallisation (ethanol-activated charcoal) afforded colourless crystals, mp $152-154^{\circ} \mathrm{C}$ (Found: C, 78.5 ; H, 6.3; N, 4.5%, M^{+}, 305.1410. $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires C, 78.7; $\mathrm{H}, 6.3 ; \mathrm{N}, 4.6 \%$; $M, 305.1416) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1727$ and $1651\left(\mathrm{C}=\mathrm{O}\right.$ str); $\delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.5(2 \mathrm{H}$, br d, ring C-H), $2.0(2 \mathrm{H}$, br s, ring $\mathrm{C}-\mathrm{H})$, $3.15\left(4 \mathrm{H}, \mathrm{m}\right.$, ring $\mathrm{C}-\mathrm{H}$ and $\left.\mathrm{PhCH}_{2}\right), 3.9(1 \mathrm{H}$, br s, ring $\mathrm{C}-\mathrm{H}), 4.65(1 \mathrm{H}, \mathrm{brs}$, ring C-H), $7.35-7.5(7 \mathrm{H}, \mathrm{m}$, aryl), 7.63 (1 H , ddd, $J 1.2,7.2$ and 7.7 , aryl), $7.75(1 \mathrm{H}, \mathrm{d}, J 7.7$, aryl).

N-Methylspiro[indane-2,2'-piperidin]-1-one 5

2-Benzyl-2-ethoxycarbonyl-1-methylpiperidine ${ }^{1} 4(4.0 \mathrm{~g}, 15.3$ mmol) was stirred in polyphosphoric acid (40 g) for 4 days, at $130-150^{\circ} \mathrm{C}$. The mixture was cooled to $60^{\circ} \mathrm{C}$, poured onto icewater, basified with aqueous sodium hydroxide and extracted with dichloromethane. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo, to produce a dark residual oil. Purification by column chromatography (eluent: $300: 8: 1$, $\mathrm{CHCl}_{3}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}-\mathrm{NH}_{3}$) and Kugelrohr distillation, produced the title compound as a mobile, orange oil $(1.21 \mathrm{~g}, 37 \%)$, bp $135^{\circ} \mathrm{C} / 0.01 \mathrm{mmHg}$ (Found: C, 77.9; H, 8.3; N, $6.2 \% ; \mathrm{M}^{+}$, 215.1319. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}$ requires $\mathrm{C}, 78.1 ; \mathrm{H}, 8.0 ; \mathrm{N}, 6.5 \% ; M$, 215.1310) [the methiodide salt had $\mathrm{mp} 215^{\circ} \mathrm{C}$ (decomp.) (Found: C, 50.8; H, 5.7; I, 34.2; N, 3.4\%. $\mathrm{C}_{15} \mathrm{H}_{20}$ INO requires C, $50.4 ; \mathrm{H}, 5.6 ; \mathrm{I}, 35.5 ; \mathrm{N}, 3.9 \%)] ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1725(\mathrm{C}=\mathrm{O}$ str); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.45(2 \mathrm{H}, \mathrm{m}$, ring C-H), $1.8(4 \mathrm{H}, \mathrm{m}$, ring C-H), $2.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{3}\right), 2.39(1 \mathrm{H}, \mathrm{dt}, J 2.9$ and 11.4 , ring C-H), 2.80-2.95 ($2 \mathrm{H}, \mathrm{m}$ and d, $J 17.3, \mathrm{PhCH}_{2}$ and ring $\mathrm{C}-\mathrm{H}), 3.31\left(1 \mathrm{H}, \mathrm{d}, J 17.3, \mathrm{PhCH}_{2}\right), 7.38(1 \mathrm{H}, \mathrm{td}, J 0.8$ and 7.4 , aryl), $7.48(1 \mathrm{H}, \mathrm{dt}, J 1$ and 7.7 , aryl), $7.61(1 \mathrm{H}, \mathrm{dt}, J 1$ and 7.4 , aryl), $7.8\left(1 \mathrm{H}, \mathrm{dd}, J 1\right.$ and 7.7 , aryl); $\delta_{\mathrm{C}}\left(100.625 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $21.09\left(\mathrm{CH}_{2}\right), 25.66\left(\mathrm{CH}_{2}\right), 29.08\left(\mathrm{CH}_{2}\right), 35.28\left(\mathrm{PhCH}_{2}\right), 39.76$ $\left(\mathrm{N}-\mathrm{CH}_{3}\right), 52.20(\mathrm{C}-6), 70.25(\mathrm{C}-2), 124.69,127.07,127.71$, 135.43 (aryl C-H), 135.89, 152.27 (ipso-aryl), 208.7 (C=O).

1-Benzoyl-4-benzyl-3-ethoxycarbonyl-1,4,5,6-tetrahydropyridine 7 ($\mathbf{R}=\mathbf{P h C O}$)

1-Benzoyl-4-benzyl-3-ethoxycarbonyl-1,4-dihydropyridine ${ }^{1}$
$6(\mathrm{R}=\mathrm{PhCO})(2.8 \mathrm{~g}, 8.06 \mathrm{mmol})$ was hydrogenated in ethanol ($200 \mathrm{~cm}^{3}$) over platinum oxide (200 mg) in a Cook hydrogenator ($45 \mathrm{psi} / 25^{\circ} \mathrm{C}$). The catalyst was then removed by filtration through kieselguhr and the filtrate was concentrated in vacuo to give a viscous oil ($2.75 \mathrm{~g}, 98 \%$) (TLC indicated one major component). Purification by column chromatography (eluent: 20% ethyl acetate-hexane) gave the product as a colourless solid ($2.59 \mathrm{~g}, 92 \%$), $\mathrm{mp} 66-68{ }^{\circ} \mathrm{C}$. HPLC indicated a single fraction was present (retention time, 10 min ; eluent: 70% acetonitrile-water) (Found: C, 75.5; H, 6.4; N, 3.8\%; M^{+}, 349.1687. $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires $\mathrm{C}, 75.6 ; \mathrm{H}, 6.6 ; \mathrm{N}, 4.0 \% ; M$, 349.1678); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 1705$ and $1680(\mathrm{C}=0 \mathrm{ostr}) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.27\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.64(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$,
$1.86(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.4\left(1 \mathrm{H}, \mathrm{dd}, J 10.7\right.$ and $\left.13.4, \mathrm{PhCH}_{2}\right), 2.99$ $(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.15\left(1 \mathrm{H}, \mathrm{dd}, J 3.3\right.$ and $\left.13.4, \mathrm{PhCH}_{2}\right), 3.4(1 \mathrm{H}$, dt, $J 3.3$ and $13.4,6-\mathrm{H}), 4.18\left(3 \mathrm{H}, \mathrm{q}, J 7.1,6-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 7.21-7.34 ($5 \mathrm{H}, \mathrm{m}$, aryl), $7.45-7.6$ ($5 \mathrm{H}, \mathrm{m}$, aryl), 7.97 (1 H , br s, 2-H).

4-Benzyl-3-ethox ycarbonyl-1,4,5,6-tetrahydropyridine 7 ($\mathbf{R}=\mathbf{H}$)

1-Benzoyl-4-benzyl-3-ethoxycarbonyl-1,4,5,6-tetrahydropyridine $7(\mathrm{R}=\mathrm{PhCO})(1.0 \mathrm{~g}, 2.86 \mathrm{mmol})$, sodium hydroxyde (0.126 $\mathrm{g}, 3.15 \mathrm{mmol}$), water ($5 \mathrm{~cm}^{3}$) and ethanol ($10 \mathrm{~cm}^{3}$) were boiled under reflux for 6 days. The system was then cooled, diluted with water ($100 \mathrm{~cm}^{3}$) and extracted with dichloromethane. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Recrystallisation (light petroleum, bp $80-100^{\circ} \mathrm{C}$) yielded the product as colourless crystals (0.625 g , 92%), mp $65-67^{\circ} \mathrm{C}$ (Found: C, $73.6 ; \mathrm{H}, 7.9 ; \mathrm{N}, 5.5 \% ; \mathrm{M}^{+}$, 245.1417. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $\mathrm{C}, 73.45 ; \mathrm{H}, 7.8 ; \mathrm{N}, 5.7 \% ; M$, 245.1416); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1675(\mathrm{C}=\mathrm{Ostr}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $1.30\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.51(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.69(1 \mathrm{H}, \mathrm{m}, 5-$ H), 2.32 (1 H , dd, $J 10.7$ and $13.4, \mathrm{PhCH}_{2}$), $2.93(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, $3.11\left(1 \mathrm{H}, \mathrm{dd}, J 3.4\right.$ and $\left.13.4, \mathrm{PhCH}_{2}\right), 3.15-3.28(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$, $4.18\left(2 \mathrm{H}, \mathrm{dq}, J 2.0\right.$ and $\left.7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.66(1 \mathrm{H}, \mathrm{br}$ s, exch., $\mathrm{N}-\mathrm{H}$), $7.15-7.33$ ($5 \mathrm{H}, \mathrm{m}$, aryl), 7.54 (1 H, d, $J 6.25,2-\mathrm{H}$).

3,4,4a,5-Tetrahydrobenz [g]isoquinolin-10(2H)-one 8

1-Benzoyl-4-benzyl-3-ethoxycarbonyl-1,4,5,6-tetrahydropyridine $7(\mathrm{R}=\mathrm{PhCO})(2.0 \mathrm{~g}, 5.72 \mathrm{mmol})$ was stirred in polyphosphoric acid (20 g) for 3 days at $95^{\circ} \mathrm{C}$. The reaction mixture was then cooled to $60^{\circ} \mathrm{C}$, added to ice-water, basified with aqueous sodium hydroxide and extracted with dichloromethane. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo, to produce a brown solid residue. Purification by column chromatography (eluent: 150:8:1 $\mathrm{CHCl}_{3}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}-\mathrm{NH}_{3}$) yielded a colourless solid ($0.804 \mathrm{~g}, 71 \%$). Recrystallisation (ethanol-decolourising charcoal) gave colourless crystals, $\mathrm{mp} 182-183^{\circ} \mathrm{C}$ (Found: C, 78.1; $\mathrm{H}, 6.6 ; \mathrm{N}, 7.0 \% ; \mathrm{M}^{+}, 199.0990 . \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}$ requires C , $78.4 ; \mathrm{H}, 6.6 ; \mathrm{N}, 7.0 \% ; M, 199.0997) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3190(\mathrm{~N}-\mathrm{H}$ str), 1675 (C=O str); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.79(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, $2.07(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.6-2.94\left(3 \mathrm{H}, \mathrm{m}, 4 \mathrm{a}-\mathrm{H}\right.$ and $\left.\mathrm{PhCH}_{2}\right), 3.37-$ $3.52(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 7.1-7.4(5 \mathrm{H}, \mathrm{m}$, aryl and exch., $\mathrm{N}-\mathrm{H}$), 7.62 ($1 \mathrm{H}, \mathrm{d}, J 2.3,1-\mathrm{H}$).

4-Benzyl-3-ethoxycarbonylpyridine 9

A solution of 1-benzoyl-4-benzyl-3-ethoxycarbonyl-1,4-dihydropyridine $6(\mathrm{R}=\mathrm{PhCO})^{1}(1.04 \mathrm{~g}, 3.0 \mathrm{mmol})$, o-chloranil ($3,4,5,6$-tetrachloro-o-benzoquinone) ($0.811 \mathrm{~g}, 3.3 \mathrm{mmol}$) and Na -dried toluene ($20 \mathrm{~cm}^{3}$) were refluxed under nitrogen for 6 h . Ether ($50 \mathrm{~cm}^{3}$) and 1 m aqueous sodium hydroxide were added to the cooled reaction mixture which was then stirred for 5 min and filtered through kieselguhr. The organic layer was washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo, to yield a dark residual oil. Purification by Kugelrohr distillation produced a colourless, mobile oil ($0.29 \mathrm{~g}, 40 \%$), bp $120^{\circ} \mathrm{C} / 0.03 \mathrm{mmHg}$ (Found: C, $74.35 ; \mathrm{H}, 6.2 ; \mathrm{N}, 5.7 \% ; \mathrm{M}^{+}$, 241.1098. $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $\mathrm{C}, 74.7 ; \mathrm{H}, 6.3 ; \mathrm{N}, 5.8 \% ; M$, 241.1103); $\nu_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1727$ (C=O str); $\delta_{\mathrm{H}}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.35\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.35(2 \mathrm{H}, \mathrm{q}, J 7.1$, $\left.\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.4(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH})_{2}\right), 7.08(1 \mathrm{H}, \mathrm{d}, J 5.2, \mathrm{H}-5), 7.1-7.4$ ($5 \mathrm{H}, \mathrm{m}$, aryl), $8.57(1 \mathrm{H}, \mathrm{d}, J 5.2, \mathrm{H}-6), 9.09(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2)$.

2-Benzoyl-5-benzyl-7,7-dibromo-5-ethoxycarbonyl-2-azabicyclo-[4.1.0]hept-3-ene 11
1-Benzoyl-4-benzyl-4-ethoxycarbonyl-1,4-dihydropyridine 2 $\left(\mathrm{R}^{1}=\mathrm{PhCO}, \mathrm{R}^{2}=\mathrm{PhCH}_{2}\right)(0.5 \mathrm{~g}, 1.43 \mathrm{mmol})$ in benzene $(10$ cm^{3}) was refluxed under nitrogen, while a solution of phenyl(tribromomethyl)mercury ($0.825 \mathrm{~g}, 1.57 \mathrm{mmol}$) in benzene (10 cm^{3}) was added, over 3 min . After refluxing for 18 h (TLC indicated the mercurial had been consumed), the cooled solution
was filtered and concentrated in vacuo, to give a colourless oil. Purification by column chromatography (eluent: 15% ethyl acetate-hexane) produced a colourless, viscous oil, which crystallised slowly ($0.53 \mathrm{~g}, 72 \%$), mp $104^{\circ} \mathrm{C}$ (Found: C, 53.4; H, $4.0 ; \mathrm{Br}, 30.95 ; \mathrm{N}, 2.6 \% ; \mathrm{M}^{+}, 520.9859,518.9869,516.9855$. $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{NO}_{3}$ requires C, $53.2 ; \mathrm{H}, 4.1 ; \mathrm{Br}, 30.8 ; \mathrm{N}, 2.7 \%$; $M, 520.9848,518.9868,516.9888)$; $\nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1728$ and $1675(\mathrm{C}=\mathrm{O} \operatorname{str}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.35\left(3 \mathrm{H}, \mathrm{br} \mathrm{t}, J 7.1, \mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{3}\right), 2.53(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{H}), 3.0-3.4$ and $4.0(3 \mathrm{H}, \mathrm{br} \mathrm{m}$ and br s, PhCH_{2} and 1-H), 4.12-4.44 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 4.9-5.5 (1 H, br $\mathrm{d}, 4-\mathrm{H}), 6.36$ and $7.1-7.7$ ($11 \mathrm{H}, \mathrm{br} \mathrm{s}$ and $\mathrm{br} \mathrm{m}, 3-\mathrm{H}$ and aryl).

2-Benzoyl-5-benzyl-7,7-dibromo-4-ethoxycarbonyl-2-azabicyclo-[4.1.0]hept-3-ene 12

A solution of 1-benzoyl-4-benzyl-3-ethoxycarbonyl-1,4-dihydropyridine $6(\mathrm{R}=\mathrm{PhCO})(3.47 \mathrm{~g}, 10 \mathrm{mmol})$ in benzene (10 cm^{3}) was refluxed under nitrogen, while a solution of phenyl(tribromomethyl)mercury ($5.3 \mathrm{~g}, 11 \mathrm{mmol}$) in benzene $\left(10 \mathrm{~cm}^{3}\right.$) was added over 3 min . After refluxing for 18 h (TLC indicated the mercurial had been consumed), the cooled solution was filtered and concentrated in vacuo, to produce a brown solid. Purification by column chromatography (eluent: 30% ethyl acetate-hexane) and recrystallisation (ethanolactivated charcoal) produced colourless needles ($3.52 \mathrm{~g}, 68 \%$), $\mathrm{mp} 163-165^{\circ} \mathrm{C}$. HPLC indicated a single fraction (retention time 10 min , eluent: 60% acetonitrile-water) (Found: C, 53.4; $\mathrm{H}, 4.0 ; \mathrm{Br}, 30.7 ; \mathrm{N}, 2.7 \% ; \mathrm{M}^{+}, 520.9866,518.9877,516.9900$. $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{NO}_{3}$ requires C, 53.2; $\mathrm{H}, 4.1 ; \mathrm{Br}, 30.8 ; \mathrm{N}, 2.7 \% ; M$, $520.9848,518.9868,516.9888$); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1695$ and 1685 $(\mathrm{C}=\mathrm{O} \mathrm{str}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.31\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $2.23(1 \mathrm{H}, \mathrm{d}, J 10.4,6-\mathrm{H}), 2.64\left(1 \mathrm{H}, \mathrm{dd}, J 9.1\right.$ and 13.5 , PhCH_{2}), $3.16(1 \mathrm{H}$, dd, $J 3.3$ and $9.1,5-\mathrm{H}), 3.31(1 \mathrm{H}, \mathrm{dd}, J 3.3$ and 13.5 , PhCH ${ }_{2}$), $3.63(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 4.25\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $7.22-7.36(5 \mathrm{H}, \mathrm{m}$, aryl), $7.49-7.61(5 \mathrm{H}, \mathrm{m}$, aryl), $8.06(1 \mathrm{H}$, br s, 3-H).

2-Benzoyl-5-benzyl-7,7-dichloro-5-ethoxycarbonyl-2-azabicyclo-[4.1.0]hept-3-ene 16

Aqueous sodium hydroxide ($6 \mathrm{~cm}^{3}, 50 \% \mathrm{w} / \mathrm{w}$) was added, dropwise, to a solution of 1-benzoyl-4-benzyl-4-ethoxycar-bonyl-1,4-dihydropyridine $2\left(\mathrm{R}^{1}=\mathrm{PhCO}, \quad \mathrm{R}^{2}=\mathrm{PhCH}_{2}\right)$ $(1.34 \mathrm{~g}, 3.85 \mathrm{mmol})$ and benzyltriethylammonium chloride $(0.1 \mathrm{~g}, 0.35 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}\left(8 \mathrm{~cm}^{3}\right)$. The two-phase system was stirred for 20 h , then poured into water ($100 \mathrm{~cm}^{3}$) and extracted with dichloromethane. The combined extracts were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo, to produce a brown residue. Purification by column chromatography (eluent: 20% ethyl acetate-hexane) produced a colourless, viscous oil, which crystallised slowly ($1.55 \mathrm{~g}, 94 \%$), mp $67-73{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, $64.4, \mathrm{H}, 4.7$; $\mathrm{Cl}, 16.3 ; \mathrm{N}, 3.0 \% ; \mathrm{M}^{+}$, 431.0876, 429.0911. $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NO}_{3}$ requires $\mathrm{C}, 64.2 ; \mathrm{H}, 4.9 ; \mathrm{Cl}, 16.5 ; \mathrm{N}, 3.25 \% ; M, 431.0869$, 429.0899); $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 1734$ and $1663\left(\mathrm{C}=\mathrm{O}\right.$ str); $\delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.32\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.43(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $6-\mathrm{H}), 3.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 3.2-4.05(1 \mathrm{H}, 2 \times \mathrm{br} \mathrm{s}, 1-\mathrm{H})$, $4.10-4.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.9$ and $5.35(1 \mathrm{H}, 2 \times \mathrm{brs}, 4-\mathrm{H})$, $6.3-7.5(11 \mathrm{H}$, br s and $\mathrm{br} \mathrm{m}, 3-\mathrm{H}$ and aryl).

2-Benzoyl-5-benzyl-7,7-dichloro-4-ethoxycarbonyl-2-azabicyclo-[4.1.0]hept-3-ene 17

Aqueous sodium hydroxide $\left(6 \mathrm{~cm}^{3}, 50 \% \mathrm{w} / \mathrm{w}\right)$ was added, dropwise, to a solution of 1-benzoyl-4-benzyl-3-ethoxycarbonyl-1,4dihydropyridine ${ }^{1} 6(\mathrm{R}=\mathrm{PhCO})(1.34 \mathrm{~g}, 3.85 \mathrm{mmol})$ and benzyltriethylammonium chloride $(0.1 \mathrm{~g}, 0.35 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(8$ cm^{3}). The two-phase system was stirred for 26 h , then poured into water ($100 \mathrm{~cm}^{3}$) and extracted with dichloromethane. The combined extracts were washed with water, dried $\left(\mathrm{Na}_{2}{ }^{-}\right.$ SO_{4}), filtered and concentrated in vacuo, to produce a dark residue. Purification by column chromatography (eluent: 20\% ethyl acetate-hexane) produced a yellow, crystalline solid.

Recrystallisation (ethanol) afforded colourless plates $(0.18 \mathrm{~g}$, 11%), mp $134-135^{\circ} \mathrm{C}$ (Found: C, 64.15; H, 4.8; Cl, $16.45 ; \mathrm{N}$, $3.0 \% ; \mathrm{M}^{+}, 433.0818,431.0882,429.0897 . \mathrm{C}_{23} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NO}_{3}$ requires $\mathrm{C}, 64.2 ; \mathrm{H}, 4.9 ; \mathrm{Cl}, 16.5 ; \mathrm{N}, 3.25 \% ; M, 433.0840$, 431.0869, 429.0899); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3130,3080$ and 3055 (aromatic C-H str), 2980 and 2925 (aliphatic C-H str), 1700 and $1650(\mathrm{C}=\mathrm{O} \operatorname{str}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.32(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.14(1 \mathrm{H}, \mathrm{d}, J 10.5,6-\mathrm{H}), 2.62(1 \mathrm{H}, \mathrm{dd}, J 8.9$ and $13.2, \mathrm{PhCH}_{2}$), $3.24(1 \mathrm{H}, \mathrm{dd}, J 3.3$ and $8.9,5-\mathrm{H}), 3.32(1 \mathrm{H}, \mathrm{dd}, J$ 3.3 and $\left.13.2, \mathrm{PhCH}_{2}\right), 3.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 4.24(2 \mathrm{H}, \mathrm{q}, J 7.1$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $7.2-7.4$ ($5 \mathrm{H}, \mathrm{m}$, aryl), $7.45-7.6$ ($5 \mathrm{H}, \mathrm{m}$, aryl), 8.02 ($1 \mathrm{H}, \mathrm{br}$ s, $3-\mathrm{H}$).

2-Benzoyl-5-benzyl-7,7-dichloro-5-ethoxycarbonyl-2-azabicyclo[4.1.0]heptane 21

2-Benzoyl-5-benzyl-7,7-dichloro-5-ethoxycarbonyl-2-azabicy-clo[4.1.0]hept-3-ene $16(1.5 \mathrm{~g}, 3.49 \mathrm{mmol})$, lithium carbonate ($0.75 \mathrm{~g}, 10.5 \mathrm{mmol}$), ethanol ($150 \mathrm{~cm}^{3}$) and 10% palladium on charcoal (150 mg) were hydrogenated in a Cook hydrogenator ($50 \mathrm{psi} / 25^{\circ} \mathrm{C}$), for 7 days. The catalyst was then removed by filtration through kieselguhr and the filtrate was concentrated in vacuo, to produce a viscous oil. Purification by column chromatography (eluent: 30% ethyl acetate-hexane), produced a colourless solid ($1.01 \mathrm{~g}, 61 \%$), mp $114-115^{\circ} \mathrm{C}$ (Found: C, 64.2; H, 5.4; Cl, 16.4; N, 3.15\%; M^{+}, 435.0971, 433.1017, 431.1051. $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{NO}_{3}$ requires $\mathrm{C}, 63.9 ; \mathrm{H}, 5.4 ; \mathrm{Cl}, 16.4 ; \mathrm{N}$, $3.2 \% ; M, 435.0996,433.1026,431.1055) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1750$ and $1651\left(\mathrm{C}=\mathrm{O}\right.$ str); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.25(3 \mathrm{H}, \mathrm{t}, J 7.2$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.6-2.4 ($3 \mathrm{H}, \mathrm{m}$, ring C-H), $2.8-3.2(3 \mathrm{H}, \mathrm{m}$, ring C-H and $\mathrm{PhCH} \mathrm{H}_{2}$), 3.3-3.7 ($1 \mathrm{H}, 2 \times \mathrm{br}$ d, ring C-H), 3.8-4.5 (3 H , m, ring C-H and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.05(2 \mathrm{H}, \mathrm{m}$, aryl), $7.30(3 \mathrm{H}, \mathrm{m}$, aryl), $7.45(3 \mathrm{H}, \mathrm{m}$, aryl), $7.65(2 \mathrm{H}, \mathrm{m}$, aryl).

Cyclodehydration of 2-benzoyl-5-benzyl-7,7-dichloro-5-ethoxy-carbonyl-2-azabicyclo[4.1.0]heptane 21

The azabicycloheptane ($0.45 \mathrm{~g}, 1.04 \mathrm{mmol}$) and polyphosphoric acid (40 g) were stirred for 5 days at $120^{\circ} \mathrm{C}$. The system was cooled to $60^{\circ} \mathrm{C}$ and poured into ice-water, then basified with aqueous sodium hydroxide and extracted with dichloromethane. The dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ extracts were filtered and concentrated in vacuo, to produce a dark solid. Purification by column chromatography (eluent: 50% ethyl acetate-hexane) and recrystallisation (ethyl acetate) yielded 2-benzoyl-7,7dichlorospiro [(2 -azabicyclo[4.1.0]heptane) $5,2^{\prime}$ 'indan]-1'-one 22 as a colourless micro-crystalline solid ($0.33 \mathrm{~g}, 82 \%$), mp $184-185{ }^{\circ} \mathrm{C}$ (Found: C, $65.2 ; \mathrm{H}, 4.5 ; \mathrm{Cl}, 18.3 ; \mathrm{N}, 3.6 \% ; \mathrm{M}^{+}$, 389.0576, 387.0616, 385.0626. $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NO}_{2}$ requires C, 65.3; $\mathrm{H}, 4.45 ; \mathrm{Cl}, 18.4 ; \mathrm{N}, 3.6 \% ; M, 389.0578,387.0607,385.0636$); $\nu_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3080,3055$ and 3005 (aromatic C-H str), 2955 and 2900 (aliphatic $\mathrm{C}-\mathrm{H}$ str), 1727 and 1650 ($\mathrm{C}=\mathrm{O}$ str); $\delta_{\mathrm{H}}(250$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.25-2.05(2 \mathrm{H}, \mathrm{m}$, ring C-H), 2.5-3.05 $(2 \mathrm{H}$, br dt and br t , ring $\mathrm{C}-\mathrm{H}$), 3.05-3.4 (3 H , m, ring C-H and PhCH_{2}), 3.8-4.7 (1 H, $2 \times$ br d, ring C-H), $7.45(6 \mathrm{H}, \mathrm{m}$, aryl), $7.6(2 \mathrm{H}$, m, aryl), $7.85(1 \mathrm{H}, \mathrm{d}$, aryl).

Hydrogenolysisof 2-benzoyl-5-benzyl-7,7-dichloro-4-ethoxycarb-

 onyl-2-azabicyclo[4.1.0]hept-3-ene 17The 2-azabicyclo[4.1.0]heptene ($0.18 \mathrm{~g}, 0.42 \mathrm{mmol})$, triethylamine ($0.5 \mathrm{~cm}^{3}$), ethanol ($150 \mathrm{~cm}^{3}$) and 10% palladium on charcoal (100 mg) were shaken in a Cook hydrogenator (50 $\mathrm{psi} / 25^{\circ} \mathrm{C}$), for 7 days. The catalyst was then removed by filtration through kieselguhr and the filtrate was concentrated in vacuo, to produce a two component system (TLC). Purification by column chromatography (eluent: 25% ethyl acetate-hexane) afforded starting material ($0.05 \mathrm{~g}, 28 \%$), 2azabicycloheptane $25(0.09 \mathrm{~g}, 49 \%), \mathrm{mp} 112-114^{\circ} \mathrm{C}$ and 2azabicycloheptane 26 (trace amount), mp $118^{\circ} \mathrm{C}$.

2-Benzoyl-5-benzyl-7,7-dichloro-4-ethoxycarbonyl-2-azabicyclo[4.1.0]heptane 25 (Found: C. 63.7; H, 5.4; N, 3.2\%; M^{+},
435.1004, 433.1021, 431.1045. $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{NO}_{3}$ requires C , 63.9 ; H, 5.4; N, 3.2\%; $M, 435.0996,433.1026,431.1055$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1730(\mathrm{C}=\mathrm{O} \mathrm{str}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.32(3$ $\left.\mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.72(1 \mathrm{H}, \mathrm{dd}, J 4.4$ and $10.4,6-\mathrm{H}), 2.4$ ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{H}$), $2.62\left(1 \mathrm{H}, \mathrm{dd}, J 9.8\right.$ and $13.8, \mathrm{PhCH}_{2}$), $3.15\left(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 3-\mathrm{H}\right.$ and $\left.\mathrm{PhCH}_{2}\right), 4.21(2 \mathrm{H}, \mathrm{q}, J 7.1$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.42(1 \mathrm{H}, \mathrm{dd}, J 3.8$ and $12.8,3-\mathrm{H}), 7.1-7.6(10 \mathrm{H}, \mathrm{m}$, aryl).
2-Benzoyl-5-benzyl-7-chloro-4-ethoxycarbonyl-2-azabicyclo[4.1.0]heptane 26. (Found: $\mathbf{M}^{+}, 399.1409,397.1454 . \mathrm{C}_{23}{ }^{-}$ $\mathrm{H}_{24} \mathrm{ClNO}_{3}$ requires $\left.M, 399.1415,397.1445\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $1730(\mathrm{C}=\mathrm{O} \operatorname{str}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.32(4 \mathrm{H}, \mathrm{t}, J 7.1$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$ and ring $\mathrm{C}-\mathrm{H}$), 2.3-2.7 $(2 \mathrm{H}, \mathrm{m}$, ring $\mathrm{C}-\mathrm{H}$ and PhCH_{2}), 2.81 (1 H , m, ring C-H), 3.05-3.25 ($2 \mathrm{H}, \mathrm{m}$, ring C-H and PhCH), $3.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, ring $\mathrm{C}-\mathrm{H}), 4.07(1 \mathrm{H}, \mathrm{br}$ s, ring $\mathrm{C}-\mathrm{H}), 4.20\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.38(1 \mathrm{H}, \mathrm{dd}, J 4.1$ and 13.2 , ring C-H), 7.15-7.50 ($10 \mathrm{H}, \mathrm{m}$, aryl).

Hydrogenolysis of 2-benzoyl-5-benzyl-7,7-dibromo-5-ethoxy-

 carbonyl-2-azabicyclo[4.1.0]hept-3-ene 11The 2-azabicyclo[4.1.0]heptene ($0.2 \mathrm{~g}, 0.39 \mathrm{mmol}$), lithium carbonate ($0.06 \mathrm{~g}, 0.85 \mathrm{mmol}$), ethanol ($150 \mathrm{~cm}^{3}$) and 10% palladium on charcoal (100 mg) were hydrogenated in a Cook hydrogenator ($50 \mathrm{psi} / 25^{\circ} \mathrm{C}$), for 3 days. The catalyst was then removed by filtration through kieselguhr and the filtrate was concentrated in vacuo, to produce a two component system (TLC). Purification by column chromatography (eluent: 20\% ethyl acetate-hexane) afforded some starting material (mp, TLC and ${ }^{1} \mathrm{H}$ NMR were consistent with authentic starting material), 7-bromo-2-azabicycloheptene 19 ($0.08 \mathrm{~g}, 45 \%$), a viscous oil and 7-bromo-2-azabicycloheptane 20 (trace amount), a colourless solid, $\mathrm{mp} 94-97^{\circ} \mathrm{C}$.

2-Benzoyl-5-benzyl-7-bromo-5-ethoxycarbonyl-2-azabicyclo-[4.1.0]hept-3-ene 19. (Found: M^{+}, 439.0777. $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrNO}_{3}$ requires $M, 439.0783$); $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 1727$ and 1651 ($\mathrm{C}=\mathrm{O}$ str); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.26\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.9-2.4(1 \mathrm{H}, \mathrm{m}$, ring $\mathrm{C}-\mathrm{H}$), 2.9-3.3 ($3 \mathrm{H}, \mathrm{m}$, ring $\mathrm{C}-\mathrm{H}$ and PhCH_{2}), 3.4-3.8 (1 H , m, ring C-H), $4.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.4-6.6(2 \mathrm{H}, 4 \times \mathrm{brd}$, $J 8.5,3-\mathrm{H}$ and $4-\mathrm{H}), 7.0-7.6(10 \mathrm{H}, \mathrm{m}$, aryl).

2-Benzoyl-5-benzyl-7-bromo-5-ethox ycarbonyl-2-azabicyclo[4.1.0]heptane 20. (Found: C, 62.8; H, 5.6; N, 3.1\%; M^{+}, 443.0908, 441.0932. $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrNO}_{3}$ requires $\mathrm{C}, 62.45 ; \mathrm{H}, 5.5 ; \mathrm{N}$, $3.2 \% ; M, 443.0919,441.0940) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1735$ and 1660 $(\mathrm{C}=\mathrm{O} \mathrm{str}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.30\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.65(1 \mathrm{H}, \mathrm{dt}, J 3.4$ and $14.4,4-\mathrm{H}), 1.85-1.90(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and cyclopropyl C-H), 2.83 (1 H , dd, J 2.7 and 4.5 , cyclopropyl C-H), 3.05-3.15 (3 H, m, cyclopropyl C-H, PhCH_{2} and $3-\mathrm{H}$), 3.28 ($\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.8, \mathrm{PhCH}_{2}\right), 4.14(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.14-4.35(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $7.07(2 \mathrm{H}, \mathrm{d}, J 6.5$, aryl), $7.28(3 \mathrm{H}, \mathrm{m}$, aryl), $7.45-$ 7.5 ($3 \mathrm{H}, \mathrm{m}$, aryl), 7.6 ($2 \mathrm{H}, \mathrm{m}$, aryl).

2-Benzoyl-5-benzyl-5-ethoxycarbonyl-2-azabicyclo[4.1.0]heptane 18

The dibromo-2-azabicyclo[4.1.0]heptene $11(0.2 \mathrm{~g}, 0.39 \mathrm{mmol})$, lithium carbonate ($0.06 \mathrm{~g}, 0.85 \mathrm{mmol}$), ethanol ($150 \mathrm{~cm}^{3}$) and 10% palladium on charcoal (100 mg) were hydrogenated in a Cook hydrogenator ($50 \mathrm{psi} / 25^{\circ} \mathrm{C}$), for 10 days. The catalyst was then removed by filtration and the filtrate was concentrated in vacuo. Purification by column chromatography (eluent: 40% ethyl acetate-hexane) afforded the product ($0.06 \mathrm{~g}, 43 \%$), mp $131-133{ }^{\circ} \mathrm{C}$ (Found: C, 75.7; H, 6.7; N, 3.75\%; $\mathrm{M}^{+}, 363.1831$. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3}$ requires C, $76.0 ; \mathrm{H}, 6.9$; $\mathrm{N}, 3.85 \% ; M, 363.1834$); $\nu_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1729,1640(\mathrm{C}=\mathrm{O} \operatorname{str}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $0.50-0.65(1 \mathrm{H}, \mathrm{m}$, cyclopropyl C-H), $0.75-1.25(1 \mathrm{H}, \mathrm{m}$, cyclopropyl C-H), $1.28\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.40-1.65(2 \mathrm{H}$, m , cyclopropyl C-H and $4-\mathrm{H}), 1.75(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.8-4.1(5 \mathrm{H}$, m , cyclopropyl C-H, 3-H and PhCH 2$), 4.19\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 7.0-7.15 ($2 \mathrm{H}, \mathrm{m}$, aryl), 7.2-7.3 ($3 \mathrm{H}, \mathrm{m}$, aryl), 7.4-7.45 ($3 \mathrm{H}, \mathrm{m}$, aryl), $7.6-7.65(2 \mathrm{H}, \mathrm{m}$, aryl).

Hydrogenolysis of 2-benzoyl-5-benzyl-7,7-dibromo-4-ethoxy-carbonyl-2-azabicyclo[4.1.0]hept-3-ene 12
The dibromo-2-azabicyclo[4.1.0]heptene ($0.2 \mathrm{~g}, 0.39 \mathrm{mmol}$), triethylamine ($0.5 \mathrm{~cm}^{3}$), ethyl acetate ($150 \mathrm{~cm}^{3}$) and 10% palladium on charcoal (100 mg) were hydrogenated in a Cook hydrogenator $\left(50 \mathrm{psi} / 25^{\circ} \mathrm{C}\right)$, for 9 days. The catalyst was then removed by filtration and the filtrate was concentrated in vacuo, to produce a two component system (TLC). Purification by column chromatography (eluent: 20% ethyl acetate-hexane) afforded 7 -exo-bromo-2-azabicycloheptene $23(0.05 \mathrm{~g}, 29 \%$), a colourless, viscous oil and 7-endo-bromo-2-azabicycloheptene $24(0.04 \mathrm{~g}, 23 \%)$, a colourless solid, mp $128-130^{\circ} \mathrm{C}$.
2-Benzoyl-5-benzyl-7-exo-bromo-4-ethoxycarbonyl-2-azabi-cyclo[4.1.0]hept-3-ene 23. (Found: \mathbf{M}^{+}, 439.0779. $\mathrm{C}_{23} \mathrm{H}_{22}{ }^{-}$ BrNO_{3} requires $M, 439.0783$); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 1730,1700$ and $1650(\mathrm{C}=\mathrm{O} \mathrm{str}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.29(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.91(1 \mathrm{H}, \mathrm{dd}, J 4.6$ and $9.7,6-\mathrm{H}), 2.69(1 \mathrm{H}$, dd, $J 8.2$ and $\left.13.3, \mathrm{PhCH}_{2}\right), 3.10(1 \mathrm{H}$, dd, $J 2.7$ and $4.6,7-\mathrm{H}), 3.18$ ($1 \mathrm{H}, \mathrm{dd}, J 3.5$ and $13.3, \mathrm{PhCH}_{2}$), 3.52 (1 H , dd, $J 3.5$ and 8.2 , 5H), $3.58(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 4.21\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.2-7.4$ ($5 \mathrm{H}, \mathrm{m}$, aryl), $7.45-7.6$ ($5 \mathrm{H}, \mathrm{m}$, aryl), 7.75 (1 H, br s, 3-H).
2-Benzoyl-5-benzyl-7-endo-bromo-4-ethoxycarbonyl-2-azabi-cyclo[4.1.0]hept-3-ene 24. (Found: $\mathrm{M}^{+}, 441.0752,439.0774$. $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrNO}_{3}$ requires $M, 441.0763,439.0783$); $v_{\text {max }}(\mathrm{K}-$ $\mathrm{Br}) / \mathrm{cm}^{-1} 1700,1650\left(\mathrm{C}=\mathrm{O}\right.$ str); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $1.30\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.72(1 \mathrm{H}, \mathrm{dd}, J 9.1$ and $9.1,6-\mathrm{H}$), $2.60\left(1 \mathrm{H}\right.$, dd, $J 10$ and 13 , PhCH_{2}), $3.02(1 \mathrm{H}$, dd, $J 3$ and $10,5-$ H), 3.26 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, 7-\mathrm{H}$), 3.35 ($1 \mathrm{H}, \mathrm{dd}, J 3$ and $13, \mathrm{PhCH}_{2}$), 3.5 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}$), $4.23\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.2-7.35(5 \mathrm{H}, \mathrm{m}$, aryl), $7.4-7.6(5 \mathrm{H}, \mathrm{m}$, aryl), $7.9(1 \mathrm{H}$, br s, $3-\mathrm{H})$.

Lithium aluminium hydride reduction of 2-benzoyl-5-benzyl-

 7,7-dibromo-5-ethoxycarbonyl-2-azabicyclo[4.1.0]hept-3-ene 11 The dibromo-2-azaheptene ($0.01 \mathrm{~g}, 193 \mathrm{mmol}$) in dried THF (5 cm^{3}) was added to a stirred suspension of lithium aluminium hydride ($190 \mathrm{mg}, 5.1 \mathrm{mmol}$) in dry THF $\left(15 \mathrm{~cm}^{3}\right)$. The reaction was stirred at room temperature for 1.5 h , before excess hydride was destroyed by dropwise addition of a minimum amount of water. The organic phase was filtered and the remaining solid was washed with dichloromethane ($3 \times 15 \mathrm{~cm}^{3}$). The organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo, to give a mobile, orange oil. Purification by column chromatography (eluent: 20% ethyl acetate-hexane) afforded the unstable hemiaminal ether 14 as a colourless oil (40 mg , 68%) (Found: M^{+}, 305.1780. $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}$ requires M, 305.1780); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3080,3030$ and 3005 (aromatic C-H str), 2940 and 2875 (aliphatic C-H str), 1651 and 1625 ($\mathrm{C}=\mathrm{C}$ str); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.23(1 \mathrm{H}, \mathrm{dt}, J 6$ and $9,7-\mathrm{H}), 0.72(1$ $\mathrm{H}, \mathrm{dt}, J 4$ and $6,7-\mathrm{H}), 1.42(1 \mathrm{H}, \mathrm{dt}, J 6$ and $9,6-\mathrm{H}), 1.71(1 \mathrm{H}$, dd, exch., $J 5.3$ and $10.5,4-\mathrm{H}$), $1.82(1 \mathrm{H}, \mathrm{d}$, exch., $J 10.5,4-\mathrm{H}$), $2.01(1 \mathrm{H}$, ddd, $J 4,6.6$ and $8.1,1-\mathrm{H}), 2.89(1 \mathrm{H}, \mathrm{d}, J 13.6$, PhCH_{2}), 3.01 ($1 \mathrm{H}, \mathrm{d}, J 13.6, \mathrm{PhCH}_{2}$), 3.38 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.8, \mathrm{CH}_{2}-$ O), $3.58\left(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{C} H_{2}-\mathrm{O}\right), 3.78\left(1 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{PhCH}_{2}\right)$, $3.89\left(1 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{PhCH}_{2}\right), 4.78(1 \mathrm{H}, \mathrm{d}$, collapses to singlet with $\left.\mathrm{D}_{2} \mathrm{O}, J 5.3,3-\mathrm{H}\right), 7.2-7.4(10 \mathrm{H}, \mathrm{m}$, aryl).
1,4-Dibenzoyl-4-ethoxycarbonylpiperidine 1

($\mathbf{R}^{\mathbf{1}}=\mathbf{R}^{\mathbf{2}}=\mathbf{P h C O}$)
1,4-Dibenzoyl-4-ethoxycarbonyl-1,4-dihydropyridine $2\left(\mathrm{R}^{1}=\right.$ $\left.\mathrm{R}^{2}=\mathrm{PhCO}\right)(0.6 \mathrm{~g}, 1.66 \mathrm{mmol})$, ethanol ($200 \mathrm{~cm}^{3}$) and platinum oxide (200 mg) were hydrogenated at atmospheric temperature and pressure. The catalyst was then removed by filtration through kieselguhr and the filtrate concentrated in vacuo. Purification by Kugelrohr distillation and column chromatography (eluent: 40% ethyl acetate-hexane), afforded the product $1\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{PhCO}\right)$ as a colourless, viscous oil ($0.12 \mathrm{~g}, 19 \%$), bp $170^{\circ} \mathrm{C} / 0.01 \mathrm{mmHg}$, 1-benzoyl-4-ethoxycarbonylpiperidine $1\left(\mathrm{R}^{1}=\mathrm{PhCO}, \mathrm{R}^{2}=\mathrm{H}\right)$, a colourless crystalline solid ($0.09 \mathrm{~g}, 21 \%$), $\mathrm{mp} 73-75^{\circ} \mathrm{C}$ and benzoic acid (trace amount).

1,4-Dibenzoyl-4-ethoxycarbonylpiperidine $\quad 1 \quad\left(\mathbf{R}^{1}=\mathbf{R}^{2}=\right.$ PhCO). (Found: C, $72.0 ; \mathrm{H}, 6.45 ; \mathrm{N}, 3.7 \% ; \mathrm{M}^{+}, 365.1634$. $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4}$ requires C, $72.3 ; \mathrm{H}, 6.3 ; \mathrm{N}, 3.8 \% ; M, 365.1627$); $\nu_{\max }($ film $) / \mathrm{cm}^{-1} 1730$ and $1680(\mathrm{C}=\mathrm{O} \operatorname{str}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $1.10\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.1-2.45(4 \mathrm{H}$, br d, $3-\mathrm{H}$ and $5-\mathrm{H})$, $3.52(2 \mathrm{H}$, br s, ring C-H), $3.77(1 \mathrm{H}$, br s, ring C-H), $3.91(1 \mathrm{H}$, brs, ring C-H), $4.17\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.35-7.6(8 \mathrm{H}, \mathrm{m}$, aryl), 7.82 (2 H , dd, $J 1.5$ and 7.2 , aryl).
1-Benzoyl-4-ethoxycarbonylpiperidine ${ }^{16} \quad 1 \quad\left(\mathbf{R}^{1}=\mathbf{P h C O}\right.$, $\mathbf{R}^{2}=\mathbf{H}$). (Found: C, $68.9 ; \mathrm{H}, 7.5 ; \mathrm{N}, 5.2 \%$. Calc. for $\left.\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3}: \mathrm{C}, 68.9 ; \mathrm{H}, 7.3 ; \mathrm{N}, 5.4 \%\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1727$ ($\mathrm{C}=\mathrm{O} \operatorname{str}$); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.27\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.9(4 \mathrm{H}, \mathrm{brd}, 3-\mathrm{H}$ and $5-\mathrm{H}), 2.57(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.05(2 \mathrm{H}$, br t, ring $\mathrm{C}-\mathrm{H}), 3.75(1 \mathrm{H}, \mathrm{br}$ s, ring C-H), $4.16(2 \mathrm{H}, \mathrm{q}, J 7.1$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, ring C-H), $7.4(5 \mathrm{H}, \mathrm{m}$, aryl).

Crystal structure determination of dibromocarbene adduct 12

The single crystal of $\mathbf{1 2}$ used for X-ray data collection (approx. dimensions $0.5 \times 0.4 \times 0.35 \mathrm{~mm}$) was grown by slow evaporation from ethanol and mounted in a sealed Lindemann capillary tube.

Crystal data. $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{NO}_{3}, \quad M=519.23$, colourless prisms, triclinic, space group $P \overline{1}$ (No. 2), $a=6.1634(12), b=$ 8.851(2), $c=20.354(4) \AA, \alpha=87.34(3), \beta=89.33(3), \gamma=$ $74.07(3)^{\circ}, \quad V=1066.5(4) \AA^{3}, \quad Z=2, \quad D_{\mathrm{c}}=1.617 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=520, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=3.825 \mathrm{~mm}^{-1}$.
Data collection. The intensity data were collected on an Enraf-Nonius 4-circle diffractometer [temperature 293(2) K; θ range: 1.00 to $24.97^{\circ} ; 0 \leqslant h \leqslant 7,-10 \leqslant k \leqslant 10,-24 \leqslant$ $l \leqslant 24]$ using graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha \mathrm{X}$-radiation ($\lambda 0.71069 \AA$) and $\omega-2 \theta$ scanning. Of the 3752 unique data [$R(\mathrm{int})=0.040]$ data measured, $2714 \mathrm{had} F>4 \sigma(F)$. The data were corrected for Lorentz and polarisation effects, and for absorption (DIFABS ${ }^{17}$).
Structure solution. The approximate positions of the nonhydrogen atoms were determined by direct methods (SHELXS86^{18}). The structure was refined by full-matrix least-squares methods on F^{2} (SHELXTL ${ }^{19}$) using all F^{2} data and anisotropic temperature factors for all the non-hydrogen atoms. All the hydrogen atoms were located on Fourier difference maps and included in the refinement process at idealised positions with isotropic temperature factors 1.5 times $U_{\text {iso }}$ of the bonded heavy atom. At convergence, the discrepancy factors R and R_{w} [$F>4 \sigma(F)$] were 0.042 and 0.104 respectively. The weighting scheme, $w^{-1}=\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0617 P)^{2}\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+\right.$ $\left.2 F_{\mathrm{c}}{ }^{2}\right) / 3$, was found to give satisfactory analyses of variance. The final difference Fourier map was essentially featureless (general noise level less that $\pm 0.3 \mathrm{e} \AA^{-3}$) with largest difference peak and hole of 0.436 and -0.848 e \AA^{-3} respectively. \ddagger

Acknowledgements

J. MacTavish thanks Organon Laboratories Ltd. for a studentship.
\ddagger Atomic coordinates, thermal parameters and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, J. Chem. Soc., Perkin Trans. I, 1996, Issue I. Any request to the CCDC for this material should quote the full literature citation and the reference number 207/42.

References

1 For Part 1, see J. MacTavish, G. R. Proctor and J. Redpath, preceding paper.
2 G. R. Proctor and F. J. Smith, J. Chem. Soc., Perkin Trans. I, 1981, 1754.

3 W. E. McKnight, G. R. Proctor, A. H. Sneddon and D. I. C. Scopes, J. Chem. Res. (S), 1987, 57.

4 J. M. Bastian, Swiss Pat., 638789 (Chem. Abstr., 1984, 100, 85598g)
5 J. M. Bastian, Ger. Pat., 2728831 (Chem. Abstr., 1978, 88, 121004e).

6 D. L. Comins and S. O'Connor, Adv. Heterocycl. Chem., 1988, 44, 200.

7 A. Cromarty, K. E. Haque and G. R. Proctor, J. Chem. Soc. (C), 1971, 3536.
8 C. D. Perchonock, I. Lantos, J. A. Finkelstein and K. G. Holden, J. Org. Chem., 1980, 45, 1950.

9 I. Lantos, D. Bhattacharjee and D. S. Eggleston, J. Org. Chem., 1986, 51, 4147.
10 D. Seyferth and R. L. Lambert, Jr., J. Organomet. Chem., 1969, 16, 21.

11 D. Seyferth, J. M. Burlitch, R. J. Minasz, J. Y.-P. Mui, H. D. Simmonds, Jr., A. J. H. Treiber and S. R. Dowd, J. Am. Chem. Soc., 1965, 87, 4259.
12 G. Manikumar and M. Shamma, J. Org. Chem., 1981, 46, 386.
13 J. L. Castro, L. Castedo and R. Riguera, J. Org. Chem., 1987,52, 3579.

14 M. Makosza and W. Wawrzyniewicz, Tetrahedron Lett., 1969, 4659. 15 M. Makosza, Pure Appl. Chem., 1975, 43, 439.
16 C. Gueremy, J. C. Malleron and S. Mignani, Eur. Pat., 429341 (Chem. Abstr., 1993, 119, 49246z.
17 DIFABS, N. P. C. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
18 SHELXS-86, G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.

19 SHELXTL/PC (Version 5.03), G. M. Sheldrick, Siemens Analytical X-ray Instruments Inc., Madison, WI, USA.

Paper 6/01658H
Received 8th March 1996 Accepted 4th June 1996

[^0]
Journal of Chemical Research

Other papers in the subject areas covered by J. Chem. Soc. are published in synopsis/microform format in J. Chem. Research. For the benefit of readers of J. Chem. Soc., the contents list of J. Chem. Research (S), Issue 9, is reproduced below.

Contents

Synthesis of N, N-Bis[tricarbonyl(cyclohexa-2,4-diene)] Amine and Ammonium Complexes Anna F. H. Siu, Leon A. P. KaneMaguire, Stephen G. Pyne and Richard M. Lambrecht
Electron-deficient Glutaconate Systems: Formation of Lactones, Benzenes and Naphthalenes S. Richard Baker, Leslie Crombie and Charles Loader

Synthesis and Application of Some New Spiro Pyrano[2,3- d]thiazole Derivatives Zeinab A. Hozien
Ruthenium Tetraoxide Oxidation of Alkenes. Part 7. A More Complete Picture Laura Albarella, Vincenzo Piccialli, Dina Smaldone and Donato Sica

Structural Evidence for the Reactivity of 4-Picoline($2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine)platinum(II) Complexes and Evidence for π-Stacking in the Crystal Lattice Alex Chernega, Anne Sophie Droz, Keith Prout, Tirayut Vilaivan, George W. Weaver and Gordon Lowe
Synthesis of Isomazole ' C ' Ring Oxypropanolamine Derivatives Paul Barraclough, W. Richard King and (in part) Derek Demaine and Janet Gillam

Mono-aroylation of 2,3- and 3,4-Diaminopyridine and 4,5-Diaminopyrimidine, and Syntheses of Putative Inotrope/ β-Adrenoceptor Antagonists Paul Barraclough, David Collard, Janet Gillam, W. Richard King and Steven Smith
Synthesis of BW567C, a Combined Inotrope- β-Adrenoceptor Antagonist Paul Barraclough, W. Richard King, Malcolm S. Nobbs and Steven Smith

Regioselective Acylation of Heterocyclic Ketene Aminals with Acetyl Chloride Chu-Yi Yu, Zhi-Tang Huang and Li-Ben Wang
Synthesis of $\left[{ }^{2} \mathrm{H}_{9}\right]$ - and $\left[{ }^{2} \mathrm{H}_{6}\right]$-Lysines Hirohisa Tsuzuki, Takuya Mashimo, Mamoru Mukumoto, Shuntaro Mataka, Jun Udagawa and Masashi Tashiro

Reversible Interconversion between Phosphonium Salts and Ylides through Electrochemical Means revealing Electrochromic Phenomena Michiharu Mitani, Masanori Kasihara and Ken-ichi Ishii

Convenient Route to Some New Pyrazole, Pyrazolo[3,4-d]pyridazine and 2,3-Dihydrothiadiazole Derivatives Incorporating a Benzothiazole Moiety Ahmad M. Farag, Kamal M. Dawood and Zaghoul E. Kandeel
Reactions of Phthalazinium-2-\{unsubstituted methanide) and -2-dicyanomethanide 1,3-Dipoles with Alkene and Alkyne Dipolarophiles: Stereochemistry and Secondary Reactions: Substituted Pyrrolo[2,1-a]phthalazines Richard N. Butler, Derval M. Farrell and Carmel S. Pyne

An Unusual Reactivity Pattern in the Kinetics of Nitrosyl Halide Catalysed Nitrosation of Thiourea and Tetramethylthiourea Michael S. Garley and Geoffrey Stedman

New Paramagnetic $\mathrm{Pt}_{3}^{1+1 \mathrm{Pt}^{\prime \prime} \text { Complex with Oxalate }}$
Mariana Mitewa and Galina Gencheva
A Convenient Synthesis of Amines from Phenols
A. Goswami, B. N. Goswami, N. Borthakur and R. C. Rastogi

Efficient Synthesis of Acetals Promoted by a Yttria-Zirconia Based Strong Lewis Acid Catalyst Godwin C. G. Pals, A. Keshavaraja, K. Saravanan and Pradeep Kumar

Stereoselective Synthesis of Substituted Allylphosphonates via the CuBr-catalysed Reaction of Vinylic Phosphonium Salts Yanchang Shen and Jiangzhao Yao

A Straightforward Synthesis of Azetidin-3-ylacetic Acid Nicholas I. Carruthers, Shing-Chun Wong and Tze-Ming Chan
Oxidation of Some Olefinic Compounds Using lodosobenzene Robert M. Moriarty, Om Prakash, Michael P. Duncan, Rahde K. Vaid and Neena Rani
Reaction of Some x-Oxophenylhydrazones with 2-Amino-1,1,3-tricyanopropene and Diethyl 1-Cyano-2-aminopropene-1,3-dicarboxylate: Synthesis of Polyfunctionally Substituted Pyridine, Pyridazine and Cinnoline Derivatives lbrahim A. El-Sakka
$N . B$. The numbers in parentheses, prefaced by M, indicate the first frame occupied by the full-text version of the paper in J. Chem. Research (M). Where no such number is given, the paper as published in J. Chem. Research (S) is complete in itself, and there is no extra material in Part M.

[^0]: (1) Copyright 1996 by the Royal Society of Chemistry

